
DPY Anti-Spam

Oct 14, 2021

Primary Interface:

1 Main Interface 3

2 Cache Choices 11

3 Example usages 13
3.1 Super duper basic bot . 13
3.2 Basic Hikari bot . 14
3.3 How to use templating in a string . 14
3.4 Cog Based Usage . 14
3.5 How to use templating in embeds . 15
3.6 Custom Punishments . 15

4 Package Logging 17
4.1 Basic Usage . 17

5 Message Templating 19
5.1 Templating Options . 19
5.2 Templating Usage . 20
5.3 Embed Templating . 20

6 Migrating to 1.0 21
6.1 Changes . 21
6.2 Features . 21
6.3 Fixes . 22

7 Enum Reference 23

8 Option’s Reference 25

9 CorePayload Reference 29

10 Package Plugin System 31
10.1 Plugin Blacklisting . 31
10.2 Custom Punishments . 31
10.3 Call Stack . 32

11 Plugin Class Schema 33
11.1 Pre-invoke Schema . 33

i

11.2 After-invoke Schema . 33
11.3 Cancelling Invocation . 34

12 Plugin-Cache Interaction 35

13 AntiSpamTracker Plugin 37

14 AntiMassMention Plugin 41

15 Statistics Plugin 43

16 AdminLogs Plugin 45

17 Object Overview 47
17.1 Plugin developers . 47

18 Abc Reference 49

19 ASH Exceptions 55

20 Guild Reference 57

21 Member Reference 59

22 Message Reference 61

23 RedisCache Reference 63

24 MemoryCache Reference 65

25 PropagateData Object Reference 69

26 Install Notes 71

27 Indices and tables 73

Python Module Index 75

Index 77

ii

DPY Anti-Spam

DPY Anti-Spam supports discord.py and all forks out of the box assuming they use the discord namespace.

If you want to use this with hikari, please enable it by passing is_using_hikari=True to the
AntiSpamHandler constructor.

The package features some built in punishments, these are:

• Per member spam is treated as warns, then kicks followed by bans.

• Per channel spam starts off as a kick straight away followed by bans

Primary Interface: 1

DPY Anti-Spam

2 Primary Interface:

CHAPTER 1

Main Interface

This file deals with the AntiSpamHandler as it is the primary Interface for you to interact with.

Note, this is the main entrance to this entire package. As such this should be the only thing you interact with.

Punishment messages won’t be sent unless a guild sets a log channel.

This handler propagation method also returns the following class for you to use:

antispam.CorePayload

class antispam.AntiSpamHandler(bot, *, is_using_hikari: bool = False, options: an-
tispam.dataclasses.options.Options = None, cache: anti-
spam.abc.Cache = None)

The overall handler for the DPY Anti-spam package

DEFAULTS:

warn_threshold: 3 This is the amount of duplicates that result in a warning within the message_interval

kick_threshold: 2 This is the amount of warns required before a kick is the next punishment

ban_threshold: 2 This is the amount of kicks required before a ban is the next punishment

message_interval: 30000ms (30 Seconds) Amount of time a message is kept before being discarded.
Essentially the amount of time (In milliseconds) a message can count towards spam

guild_warn_message: “Hey $MENTIONUSER, please stop spamming/sending duplicate messages.”
The message to be sent in the guild upon warn_threshold being reached

guild_kick_message: “$USERNAME was kicked for spamming/sending duplicate messages.” The
message to be sent in the guild upon kick_threshold being reached

guild_ban_message: “$USERNAME was banned for spamming/sending duplicate messages.” The
message to be sent in the guild upon ban_threshold being reached

member_kick_message [“Hey $MENTIONUSER, you are being kicked from $GUILDNAME for spam-
ming/sending duplicate messages.”] The message to be sent to the user who is being warned

member_ban_message [“Hey $MENTIONUSER, you are being banned from $GUILDNAME for spam-
ming/sending duplicate messages.”] The message to be sent to the user who is being banned

3

DPY Anti-Spam

member_failed_kick_message [“I failed to punish you because I lack permissions, but still you shouldn’t
spam”] The message to be sent to the user if the bot fails to kick them

member_failed_ban_message [“I failed to punish you because I lack permissions, but still you shouldn’t
spam”] The message to be sent to the user if the bot fails to ban them

message_duplicate_count: 5 The amount of duplicate messages needed within message_interval to trig-
ger a punishment

message_duplicate_accuracy: 90 How ‘close’ messages need to be to be registered as duplicates (Out
of 100)

delete_spam: False Whether or not to delete messages marked as spam

Won’t delete messages if no_punish is True

Note, this method is expensive. It will all messages marked as spam, and this means an api call per
message.

mention_on_embed: True If the message your trying to send is an embed, also send some content to
mention the person being punished.

ignored_members: [] The users (ID Form), that bypass anti-spam

ignored_channels: [] Channels (ID Form), that bypass anti-spam

ignored_roles: [] The roles (ID Form), that bypass anti-spam

ignored_guilds: [] Guilds (ID Form), that bypass anti-spam

ignore_bots: True Should bots bypass anti-spam?

warn_only: False Whether or not to only warn users, this means it will not kick or ban them

no_punish: False Don’t punish anyone, simply return whether or not they should be punished within
propagate. This essentially lets the end user handle punishments themselves.

To check if someone should be punished, use the returned value from the propagate method.
If should_be_punished_this_message is True then this package believes they should be punished.
Otherwise just ignore that message since it shouldn’t be punished.

per_channel_spam: False Track spam as per channel, rather then per guild.

guild_warn_message_delete_after: None The time to delete the guild_warn_message message

user_kick_message_delete_after: None The time to delete the member_kick_message message

guild_kick_message_delete_after: None The time to delete the guild_kick_message message

user_ban_message_delete_after: None The time to delete the member_ban_message message

guild_ban_message_delete_after: None The time to delete the guild_ban_message message

delete_zero_width_chars: True Should zero width characters be removed from messages

is_using_hikari: False Set this to True if you are using the package with hikari rather then discord.py

__init__(bot, *, is_using_hikari: bool = False, options: antispam.dataclasses.options.Options =
None, cache: antispam.abc.Cache = None)

AntiSpamHandler entry point.

Parameters

• bot – A reference to your discord bot object.

• is_using_hikari (bool, Optional) – Set this to True if you are using this pack-
age within hikari rather then discord.py

4 Chapter 1. Main Interface

https://docs.python.org/3/library/functions.html#bool

DPY Anti-Spam

• options (Options, Optional) – An instance of your custom Options the handler
should use

• cache (Cache, Optional) – Your choice of backend caching

add_guild_log_channel(log_channel: int, guild_id: int)→ None
Registers a log channel on a guild internally

Parameters

• log_channel (int) – The channel id you wish to use for logging

• guild_id (int) – The id of the guild to store this on

Notes

Not setting a log channel means it will not send any punishment messages

add_guild_options(guild_id: int, options: antispam.dataclasses.options.Options)→ None
Set a guild’s options to a custom set, rather then the base level set used and defined in ASH initialization

Warning: If using/modifying AntiSpamHandler.options to give to this method you will also
be modifying the overall options.

To get an options item you can modify freely call AntiSpamHandler.get_options(), this
method will give you an instance of the current options you are free to modify however you like.

Notes

This will override any current settings, if you wish to continue using existing settings and merely change
some I suggest using the get_options method first and then giving those values back to this method with
the changed arguments

add_ignored_item(item: int, ignore_type: antispam.enums.ignored_types.IgnoreType)→ None
Add an item to the relevant ignore list

Parameters

• item (int) – The id of the thing to ignore

• ignore_type (IgnoreType) – An enum representing the item to ignore

Raises ValueError – item is not of type int or int convertible

Notes

This will silently ignore any attempts to add an item already added.

clean_cache(strict=False)→ None
Cleans the internal cache, pruning any old/un-needed entries.

TODO Test these modes Non Strict mode:

• Member deletion criteria:

– warn_count == default

– kick_count == default

5

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

DPY Anti-Spam

– duplicate_counter == default

– duplicate_channel_counter_dict == default

– addons dict == default

– Also must have no active messages after cleaning.

• Guild deletion criteria:

– options are not custom

– log_channel_id is not set

– addons dict == default

– Also must have no members stored

Strict mode:

• Member deletion criteria

– Has no active messages

• Guild deletion criteria

– Does not have custom options

– log_channel_id is not set

– Has no active members

Parameters strict (bool) – Toggles the above

Notes

This is expensive, and likely only required to be run every so often depending on how high traffic your bot
is.

get_guild_options(guild_id: int)→ antispam.dataclasses.options.Options
Get the options dataclass for a given guild, if the guild doesnt exist raise an exception

Parameters guild_id (int) – The guild to get custom options for

Returns The options for this guild

Return type Options

Raises GuildNotFound – This guild does not exist

Notes

This returns a copy of the options, if you wish to change the options on the guild you should use the
package methods.

init()→ None
This method provides a means to initialize any async calls cleanly and without asyncio madness.

6 Chapter 1. Main Interface

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

Notes

This method is guaranteed to be called before the first time propagate runs. However, it will not be run
when the class is initialized.

static load_from_dict(bot, data: dict, *, raise_on_exception: bool = True)
Can be used as an entry point when starting your bot to reload a previous state so you don’t lose all of the
previous punishment records, etc, etc

Parameters

• bot – The bot instance

• data (dict) – The data to load AntiSpamHandler from

• raise_on_exception (bool) – Whether or not to raise if an issue is encountered
while trying to rebuild AntiSpamHandler from a saved state

If you set this to False, and an exception occurs during the build process. This will return
an AntiSpamHandler instance without any of the saved state and is equivalent to
simply doing AntiSpamHandler(bot)

Returns A new AntiSpamHandler instance where the state is equal to the provided dict

Return type AntiSpamHandler

Warning: Don’t provide data that was not given to you outside of the save_to_dict method
unless you are maintaining the correct format.

Notes

This method does not check for data conformity. Any invalid input will error unless you set
raise_on_exception to False in which case the following occurs

If you set raise_on_exception to False, and an exception occurs during the build process. This
method will return an AntiSpamHandler instance without any of the saved state and is equivalent to
simply doing AntiSpamHandler(bot)

propagate(message)→ Union[antispam.dataclasses.core.CorePayload, dict, None]
This method is the base level intake for messages, then propagating it out to the relevant guild or creating
one if that is required

For what this returns please see the top of this page.

Parameters message (Union[discord.Message, hikari.messages.
Message]) – The message that needs to be propagated out

Returns A dictionary of useful information about the Member in question

Return type dict

register_plugin(plugin, force_overwrite=False)→ None
Registers a plugin for usage for within the package

Parameters

• plugin – The plugin to register

• force_overwrite (bool) – Whether to overwrite any duplicates currently stored.

7

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool

DPY Anti-Spam

Think of this as calling unregister_extension and then proceeding to call this
method.

Raises PluginError – A plugin with this name is already loaded

Notes

This must be a class instance, and must subclass BasePlugin

remove_guild_log_channel(guild_id: int)→ None
Removes a registered guild log channel

Parameters guild_id (int) – The guild to remove it from

Notes

Silently ignores guilds which don’t exist

remove_guild_options(guild_id: int)→ None
Reset a guilds options to the ASH options

Parameters guild_id (int) – The guild to reset

Notes

This method will silently ignore guilds that do not exist, as it is considered to have ‘removed’ custom
options due to how Guild’s are created

remove_ignored_item(item: int, ignore_type: antispam.enums.ignored_types.IgnoreType) →
None

Remove an item from the relevant ignore list

Parameters

• item (int) – The id of the thing to un-ignore

• ignore_type (IgnoreType) – An enum representing the item to ignore

Raises ValueError – item is not of type int or int convertible

Notes

This will silently ignore any attempts to remove an item not ignored.

reset_member_count(member_id: int, guild_id: int, reset_type: anti-
spam.enums.reset_type.ResetType)→ None

Reset an internal counter attached to a User object

Parameters

• member_id (int) – The user to reset

• guild_id (int) – The guild they are attached to

• reset_type (ResetType) – An enum representing the counter to reset

8 Chapter 1. Main Interface

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

Notes

Silently ignores if the User or Guild does not exist. This is because in the packages mind, the counts are
‘reset’ since the default value is the reset value.

save_to_dict()→ dict
Creates a ‘save point’ of the current state for this handler which can then be used to restore state at a later
date

Returns The saved state in a dictionary form. You can give this to load_from_dict to reload
the saved state

Return type dict

Notes

For most expected use-case’s the returned Messages will be outdated, however, they are included as it is
technically part of the current state.

Note that is method is expensive in both time and memory. It has to iterate over every single stored class
instance within the library and store it in a dictionary.

For bigger bots, it is likely better you create this process yourself using generators in order to reduce
overhead.

Warning: Due to the already expensive nature of this method, all returned option dictionaries are not
deepcopied. Modifying them during runtime will cause this library to begin using that modified copy.

unregister_plugin(plugin_name: str)→ None
Used to unregister or remove a plugin that is currently loaded into AntiSpamHandler

Parameters plugin_name (str) – The name of the class you want to unregister

Raises PluginError – This extension isn’t loaded

9

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

DPY Anti-Spam

10 Chapter 1. Main Interface

CHAPTER 2

Cache Choices

Internally all data is ‘cached’ using an implementation which implements antispam.abc.Cache

In the standard package you have the following choices:

• antispam.caches.MemoryCache (Default)

• antispam.caches.RedisCache (Not yet implemented)

In order to use a cache other then the default one, simply pass in an instance of the cache you wish to use with the
cache kwarg when initialising your AntiSpamHandler.

Here is an example, note RedisCache will likely need arguments to init.

1 import discord
2 from discord.ext import commands
3

4 from antispam import AntiSpamHandler
5 from antispam.caches import RedisCache
6

7 bot = commands.Bot(command_prefix="!", intents=discord.Intents.all())
8 bot.handler = AntiSpamHandler(bot, cache=RedisCache())

Once a cache is registered like so, there is nothing else you need to do. The package will simply use that caching
mechanism.

Also note, AntiSpamHandler will call antispam.abc.Cache.initialize() before any cache operations are
undertaken.

11

DPY Anti-Spam

12 Chapter 2. Cache Choices

CHAPTER 3

Example usages

Note, all of these examples are for discord.py. If you would like another library here, let me know.

3.1 Super duper basic bot

1 import discord
2 from discord.ext import commands
3

4 from antispam import AntiSpamHandler
5

6 bot = commands.Bot(command_prefix="!", intents=discord.Intents.all())
7 bot.handler = AntiSpamHandler(bot)
8

9

10 @bot.event
11 async def on_ready():
12 # On ready, print some details to standard out
13 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
14

15

16 @bot.event
17 async def on_message(message):
18 await bot.handler.propagate(message)
19 await bot.process_commands(message)
20

21

22 if __name__ == "__main__":
23 bot.run("Bot Token Here")

13

DPY Anti-Spam

3.2 Basic Hikari bot

1 import hikari
2 from antispam import AntiSpamHandler
3

4 bot = hikari.GatewayBot(
5 token="..."
6)
7 handler = AntiSpamHandler(bot, is_using_hikari=True)
8

9 @bot.listen()
10 async def ping(event: hikari.GuildMessageCreateEvent) -> None:
11 if event.is_bot or not event.content:
12 return
13

14 await handler.propagate(event.message)
15

16 bot.run()

3.3 How to use templating in a string

1 from discord.ext import commands
2

3 from antispam import AntiSpamHandler
4

5 bot = commands.Bot(command_prefix="!")
6 bot.handler = AntiSpamHandler(bot, ban_message="$MENTIONUSER you are hereby banned

→˓from $GUILDNAME for spam!")
7

8 @bot.event
9 async def on_ready():

10 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
11

12 @bot.event
13 async def on_message(message):
14 await bot.handler.propagate(message)
15 await bot.process_commands(message)
16

17 if __name__ == "__main__":
18 bot.run("Bot Token")

3.4 Cog Based Usage

1 from discord.ext import commands
2 from antispam import AntiSpamHandler
3

4 class AntiSpamCog(commands.Cog):
5 def __init__(self, bot):
6 self.bot = bot
7 self.bot.handler = AntiSpamHandler(self.bot)
8

(continues on next page)

14 Chapter 3. Example usages

DPY Anti-Spam

(continued from previous page)

9 @commands.Cog.listener()
10 async def on_ready(self):
11 print("AntiSpamCog is ready!\n-----\n")
12

13 @commands.Cog.listener()
14 async def on_message(self, message):
15 await self.bot.handler.propagate(message)
16

17 def setup(bot):
18 bot.add_cog(AntiSpamCog(bot))

3.5 How to use templating in embeds

1 from discord.ext import commands
2

3 from antispam import AntiSpamHandler
4

5 bot = commands.Bot(command_prefix="!")
6

7 warn_embed_dict = {
8 "title": "**Dear $USERNAME**",
9 "description": "You are being warned for spam, please stop!",

10 "timestamp": True,
11 "color": 0xFF0000,
12 "footer": {"text": "$BOTNAME", "icon_url": "$BOTAVATAR"},
13 "author": {"name": "$GUILDNAME", "icon_url": "$GUILDICON"},
14 "fields": [
15 {"name": "Current warns:", "value": "$WARNCOUNT", "inline": False},
16 {"name": "Current kicks:", "value": "$KICKCOUNT", "inline": False},
17],
18 }
19 bot.handler = AntiSpamHandler(bot, guild_warn_message=warn_embed_dict)
20

21 @bot.event
22 async def on_ready():
23 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
24

25 @bot.event
26 async def on_message(message):
27 await bot.handler.propagate(message)
28 await bot.process_commands(message)
29

30 if __name__ == "__main__":
31 bot.run("Bot Token")

3.6 Custom Punishments

1 from discord.ext import commands
2

3 from antispam import AntiSpamHandler
4 from antispam.plugins import AntiSpamTracker

(continues on next page)

3.5. How to use templating in embeds 15

DPY Anti-Spam

(continued from previous page)

5

6 bot = commands.Bot(command_prefix="!")
7 bot.handler = AntiSpamHandler(bot, no_punish=True)
8 bot.tracker = AntiSpamTracker(bot.handler, 3) # 3 Being how many 'punishment requests

→˓' before is_spamming returns True
9 bot.handler.register_extension(bot.tracker)

10

11

12 @bot.event
13 async def on_ready():
14 # On ready, print some details to standard out
15 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
16

17

18 @bot.event
19 async def on_message(message):
20 await bot.handler.propagate(message)
21

22 if bot.tracker.is_spamming(message):
23 # Insert code to mute the user
24

25 # Insert code to tell admins
26

27 # ETC
28 bot.tracker.remove_punishments(message)
29

30 await bot.process_commands(message)
31

32 if __name__ == "__main__":
33 bot.run("Bot Token")

16 Chapter 3. Example usages

CHAPTER 4

Package Logging

This package features a fairly decent set of built-in logging, the recommend logging level is logging.WARNING or
logging.INFO

4.1 Basic Usage

Add this into your main.py/bot.py file, be aware this will also setup logging for discord.py and any other modules
which use it.

1 logging.basicConfig(
2 format="%(levelname)s | %(asctime)s | %(module)s | %(message)s",
3 datefmt="%d/%m/%Y %I:%M:%S %p",
4 level=logging.INFO,
5)

A more full example,

1 import logging
2

3 import discord
4 from discord.ext import commands
5

6 from antispam import AntiSpamHandler
7 from jsonLoader import read_json
8

9 logging.basicConfig(
10 format="%(levelname)s | %(asctime)s | %(module)s | %(message)s",
11 datefmt="%d/%m/%Y %I:%M:%S %p",
12 level=logging.INFO,
13)
14

15 bot = commands.Bot(command_prefix="!", intents=discord.Intents.all())
16

(continues on next page)

17

DPY Anti-Spam

(continued from previous page)

17 file = read_json("token")
18

19 # Generally you only need/want AntiSpamHandler(bot)
20 bot.handler = AntiSpamHandler(bot, ignore_bots=False)
21

22

23 @bot.event
24 async def on_ready():
25 # On ready, print some details to standard out
26 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
27

28

29 @bot.event
30 async def on_message(message):
31 await bot.handler.propagate(message)
32 await bot.process_commands(message)
33

34

35 if __name__ == "__main__":
36 bot.run(file["token"])

18 Chapter 4. Package Logging

CHAPTER 5

Message Templating

This package utilises safe conversions for message arguments within strings.

These use discord.py terms. But the package will work with the library you are using seamlessly. Don’t worry about
not seeing exact matches.

5.1 Templating Options

The following are all the options you as the user have:

• MENTIONMEMBER - This will attempt to mention the user, uses discord.Member.mention

• MEMBERNAME - This will attempt to state the user’s name, uses discord.Member.display_name

• MEMBERID - This will attempt to state the user’s id, uses discord.Member.id

• $BOTNAME - This will attempt to state your bots name, uses discord.Guild.me.name

• $BOTID - This will attempt to state your bots id, uses discord.Guild.me.id

• $GUILDNAME - This will attempt to state the guild’s name, uses discord.Guild.name

• $GUILDID - This will attempt to state the guild’s id, uses discord.Guild.id

• $TIMESTAMPNOW - This exact time formatted as hh:mm:ss AM/PM, dd/mm/yyyy, uses datetime.
datetime.now()

• $TIMESTAMPTODAY - Today’s date formatted as dd/mm/yyyy, uses datetime.datetime.now()

• $WARNCOUNT - How many times the user has been warned so far, uses AntiSpam.User.warn_count

• $KICKCOUNT - How many times the user has been removed from the guild so far, uses AntiSpam.User.
kick_count

The following are special case’s for embeds:

• MEMBERAVATAR - This will attempt to display the user’s avatar, uses discord.Member.avatar_url

• $BOTAVATAR - This will attempt to display the bots avatar, uses discord.Guild.me.avatar_url

19

DPY Anti-Spam

• $GUILDICON - This will attempt to display the guilds icon, uses discord.Guild.icon_url

Note: Example usages not final. Usage works in discord.py 1.x.x and 2.x.x + hikari

The above are valid in the following uses:

1. discord.Embed.set_author(url="")

2. discord.Embed.set_footer(icon_url="")

There are currently no plans to support either discord.Embed.image or discord.Embed.thumbnail

5.2 Templating Usage

You can include the above options in the following arguments when you initialize the package:

• guild_warn_message

• guild_kick_message

• guild_ban_message

• user_kick_message

• user_ban_message

5.3 Embed Templating

The above options can also be used within embeds, these also support templating with the options defined above.
These options are available in the following fields:

1. title, discord.Embed.title

2. description, discord.Embed.description

3. author -> name in discord.Embed.set_author(name="")

4. footer -> text in discord.Embed.set_footer(text="")

5. name & value in discord.Embed.add_field(name="", value="")

NOTE: You can add the timestamp field also. Provided it exists, it will be replaced with discord.Message.
created_at , no value required.

20 Chapter 5. Message Templating

CHAPTER 6

Migrating to 1.0

The biggest change from 0.x.x to 1.x.x is that every is now more sanely named in regard to pep8.

Likely missing things here, if you’d like support join our discord and we’d be happy to assist.

6.1 Changes

• Extensions are now called plugins

• AntiSpamHandler now takes an Options class rather then kwargs to set options.

• user_ -> member_

• When failing to send a message, it now sends it to the guild log channels

• Some type param’s are now enums. See IgnoreType and ResetType

• :py:method:‘AntiSpamHandler.propagate‘ now returns CorePayload instead of a dict

• Some misc methods on the handler have signature changes

• Package is typed more, however not fully. This is still a work in progress

• Misc changes, no doubt I’ve missed heaps

6.2 Features

• Added support for Hikari and all discord.py forks

• Added a guild log channel setting

– guild_ messages will be sent here if set, otherwise same as before

– :py:method:‘AntiSpamHandler.add_guild_log_channel‘

– :py:method:‘AntiSpamHandler.remove_guild_log_channel‘

21

DPY Anti-Spam

• Abstracted logic and data storage to be separate. This means you can setup your own cache such as redis. See
Cache

• Now features an easy way to clean up your cache. See :py:method:‘AntiSpamHandler.clean_cache‘

• New plugins:

– AntiMassMention - To stop people spam pinging

– Stats - For general package stats

– AdminLogs - An easy way to get evidence on punishments

• Plugins now have direct access to storage within the cache. You should be interacting with PluginCache for
this.

• Plugins now support blacklisting to stop runs on certain guilds. See Plugin Blacklisting under Package
Plugin System

• Roughly 150% faster then 0.x.x on small test cases

• Fully tested, no more pesky regression bugs

• Further documented

• More comprehensive logging, this is greatly improved compared to 0.x.x

6.3 Fixes

• When the package attempts to delete spam messages, it will now actually delete all messages marked as spam
rather then just the last one.

• Logging now lazily computes variables, this should be a decent speedup

22 Chapter 6. Migrating to 1.0

CHAPTER 7

Enum Reference

class antispam.enums.IgnoreType
This enum should be using with the following methods:

• antispam.AntiSpamHandler.add_ignored_item()

• antispam.AntiSpamHandler.remove_ignored_item()

It is used to signify the type of item you wish to ignore within any following propagate calls.

CHANNEL = 1

GUILD = 2

MEMBER = 0

ROLE = 3

class antispam.enums.ResetType
This enum should be using with the following methods:

• antispam.AntiSpamHandler.reset_member_count()

It is used to signify the type of reset you wish to apply to the given member.

KICK_COUNTER = 1

WARN_COUNTER = 0

23

DPY Anti-Spam

24 Chapter 7. Enum Reference

CHAPTER 8

Option’s Reference

This class represents the Options for both Guilds and the AntiSpamHandler itself. It is important to become familiar
with this dataclass.

Options can be set in two ways:

• Set when creating a new object Options(no_punish=True)

• Set using an existing object Options.no_punish = True

For more in depth meanings and explanations, please see the primary docstring of antispam.AntiSpamHandler

25

DPY Anti-Spam

class antispam.dataclasses.options.Options(*, warn_threshold: int =
3, kick_threshold: int = 2,
ban_threshold: int = 2, mes-
sage_interval: int = 30000,
message_duplicate_count: int = 5,
message_duplicate_accuracy:
int = 90,
guild_ban_message_delete_after:
int = None,
guild_kick_message_delete_after:
int = None, mem-
ber_ban_message_delete_after:
int = None,
guild_warn_message_delete_after:
int = None, mem-
ber_kick_message_delete_after:
int = None, guild_warn_message:
Union[str, dict] = ’$MEM-
BERNAME was warned for
spamming/sending duplicate
messages.’, guild_kick_message:
Union[str, dict] = ’$MEM-
BERNAME was kicked for
spamming/sending duplicate
messages.’, guild_ban_message:
Union[str, dict] = ’$MEM-
BERNAME was banned for
spamming/sending duplicate mes-
sages.’, member_warn_message:
Union[str, dict] = ’Hey $MEN-
TIONMEMBER, please stop
spamming/sending duplicate mes-
sages.’, member_kick_message:
Union[str, dict] = ’Hey $MEN-
TIONMEMBER, you are be-
ing kicked from $GUILD-
NAME for spamming/sending
duplicate messages.’, mem-
ber_ban_message: Union[str,
dict] = ’Hey $MENTIONMEM-
BER, you are being banned
from $GUILDNAME for spam-
ming/sending duplicate messages.’,
member_failed_kick_message:
Union[str, dict] = "I failed to pun-
ish you because I lack permissions,
but still you shouldn’t spam.",
member_failed_ban_message:
Union[str, dict] = "I failed to pun-
ish you because I lack permissions,
but still you shouldn’t spam.",
ignored_members: Set[int] =
NOTHING, ignored_channels:
Set[int] = NOTHING, ig-
nored_roles: Set[int] = NOTH-
ING, ignored_guilds: Set[int] =
NOTHING, delete_spam: bool
= False, ignore_bots: bool =
True, warn_only: bool = False,
no_punish: bool = False, men-
tion_on_embed: bool = True,
delete_zero_width_chars: bool =
True, per_channel_spam: bool =
False, is_per_channel_per_guild:
bool = True, addons: Dict[str,
Any] = NOTHING)

26 Chapter 8. Option’s Reference

DPY Anti-Spam

Options for the AntiSpamHandler, see AntiSpamHandler for explanations

__init__(*, warn_threshold: int = 3, kick_threshold: int = 2, ban_threshold: int
= 2, message_interval: int = 30000, message_duplicate_count: int = 5,
message_duplicate_accuracy: int = 90, guild_ban_message_delete_after:
int = None, guild_kick_message_delete_after: int = None, mem-
ber_ban_message_delete_after: int = None, guild_warn_message_delete_after:
int = None, member_kick_message_delete_after: int = None,
guild_warn_message: Union[str, dict] = ’$MEMBERNAME was warned for
spamming/sending duplicate messages.’, guild_kick_message: Union[str, dict]
= ’$MEMBERNAME was kicked for spamming/sending duplicate messages.’,
guild_ban_message: Union[str, dict] = ’$MEMBERNAME was banned for spam-
ming/sending duplicate messages.’, member_warn_message: Union[str, dict] =
’Hey $MENTIONMEMBER, please stop spamming/sending duplicate messages.’,
member_kick_message: Union[str, dict] = ’Hey $MENTIONMEMBER, you are
being kicked from $GUILDNAME for spamming/sending duplicate messages.’,
member_ban_message: Union[str, dict] = ’Hey $MENTIONMEMBER, you are
being banned from $GUILDNAME for spamming/sending duplicate messages.’,
member_failed_kick_message: Union[str, dict] = "I failed to punish you because
I lack permissions, but still you shouldn’t spam.", member_failed_ban_message:
Union[str, dict] = "I failed to punish you because I lack permissions, but still you
shouldn’t spam.", ignored_members: Set[int] = NOTHING, ignored_channels:
Set[int] = NOTHING, ignored_roles: Set[int] = NOTHING, ignored_guilds:
Set[int] = NOTHING, delete_spam: bool = False, ignore_bots: bool = True,
warn_only: bool = False, no_punish: bool = False, mention_on_embed: bool =
True, delete_zero_width_chars: bool = True, per_channel_spam: bool = False,
is_per_channel_per_guild: bool = True, addons: Dict[str, Any] = NOTHING)
→ None

Method generated by attrs for class Options.

addons

ban_threshold

delete_spam

delete_zero_width_chars

guild_ban_message

guild_ban_message_delete_after

guild_kick_message

guild_kick_message_delete_after

guild_warn_message

guild_warn_message_delete_after

ignore_bots

ignored_channels

ignored_guilds

ignored_members

ignored_roles

is_per_channel_per_guild

kick_threshold

27

DPY Anti-Spam

member_ban_message

member_ban_message_delete_after

member_failed_ban_message

member_failed_kick_message

member_kick_message

member_kick_message_delete_after

member_warn_message

mention_on_embed

message_duplicate_accuracy

message_duplicate_count

message_interval

no_punish

per_channel_spam

warn_only

warn_threshold

28 Chapter 8. Option’s Reference

CHAPTER 9

CorePayload Reference

You should not be creating this object yourself.

class antispam.CorePayload(member_warn_count: int = 0, member_kick_count: int =
0, member_duplicate_count: int = 0, member_status: str
= ’Unknown’, member_was_warned: bool = False, mem-
ber_was_kicked: bool = False, member_was_banned: bool
= False, member_should_be_punished_this_message: bool =
False, pre_invoke_extensions: Dict[str, Any] = NOTHING, af-
ter_invoke_extensions: Dict[str, Any] = NOTHING)

The CorePayload is a dataclasses which gets returned within the core punishment system for this package.

This is returned from the antispam.AntiSpamHandler.propagate() method.

Parameters

• member_warn_count (int) – How many warns this member has at this point in time

• member_kick_count (int) – How many kicks this member has at this point in time

• member_duplicate_count (int) – How many messages this member has marked as
duplicates

• member_status (str) – The status of punishment towards the member

• member_was_warned (bool) – If the default punishment handler warned this member

• member_was_kicked (bool) – If the default punishment handler kicked this member

• member_was_banned (bool) – If the default punishment handler banned this member

• member_should_be_punished_this_message (bool) – If AntiSpamHandler
thinks this member should receive some form of punishment this message. Useful for
antispam.plugins.AntiSpamTracker

__init__(member_warn_count: int = 0, member_kick_count: int = 0, member_duplicate_count:
int = 0, member_status: str = ’Unknown’, member_was_warned: bool = False,
member_was_kicked: bool = False, member_was_banned: bool = False, mem-
ber_should_be_punished_this_message: bool = False, pre_invoke_extensions: Dict[str,
Any] = NOTHING, after_invoke_extensions: Dict[str, Any] = NOTHING)→ None

29

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

DPY Anti-Spam

Method generated by attrs for class CorePayload.

30 Chapter 9. CorePayload Reference

CHAPTER 10

Package Plugin System

This package features feature a built in plugins framework soon. This framework can be used to hook into the
propagate method and run as either a pre_invoke or after_invoke (Where invoke is the built in propagate)

All registered extensions must subclass BasePlugin

A plugin can do anything, from AntiProfanity to AntiInvite. Assuming it is class based and follows the re-
quired schema you can easily develop your own plugin that can be run whenever the end developer calls await
AntiSpamHandler.propagate()

Some plugins don’t need to be registered as an extension. A good example of this is the AntiSpamTracker class.
This class does not need to be invoked with propagate as it can be handled by the end developer for finer control.
However, it can also be used as a plugin if users are happy with the default behaviour.

Any plugin distributed under the antispam package needs to be lib agnostic, so as to not a dependency of something
not in use.

10.1 Plugin Blacklisting

Plugins provide a simplistic interface for skipping execution in any given guild. Simply add the guilds id to the set
located under the Plugin.blacklisted_guilds variable and then this plugin will not be called for said guild.

10.2 Custom Punishments

1 from discord.ext import commands
2

3 from antispam import AntiSpamHandler
4 from antispam.ext import Stats
5

6 bot = commands.Bot(command_prefix="!")
7 bot.handler = AntiSpamHandler(bot, no_punish=True)

(continues on next page)

31

DPY Anti-Spam

(continued from previous page)

8 bot.stats = Stats(bot.handler)
9 bot.handler.register_extension(bot.stats)

10

11 # We don't want to collect stats on guild 12345
12 # So lets ignore it on this plugin
13 bot.stats.blacklisted_guilds.add(12345)
14

15

16 @bot.event
17 async def on_ready():
18 # On ready, print some details to standard out
19 print(f"-----\nLogged in as: {bot.user.name} : {bot.user.id}\n-----")
20

21

22 if __name__ == "__main__":
23 bot.run("Bot Token")

10.3 Call Stack

• Initially all checks are run, these are the checks baked into AntiSpamHandler

– You cannot avoid these checks, if you wish to mitigate them you should set them to values that will
not be triggered

– An option to run code before checks may be added in a future version, if this is something you would
like, jump into discord and let me know! If I know people want features, they get done quicker

• Following that, all pre-invoke plugins will be run

– If the guild this was called on is within Plugin.blacklisted_guilds then execution will be skipped and
we move onto the next plugin.

– The ordered that these are run is loosely based on the order that plugins were registered. Do not
expect any form of runtime ordering however. You should build them around the idea that they are
guaranteed to run before AntiSpamHandler.propagate, not other plugins.

– Returning cancel_next_invocation: True will result in propagate returning straight
away. It will then return the dictionary of currently processed pre_invoke_extensions

• Run AntiSpamHandler.propagate

– If any pre-invoke plugin has returned a True value for cancel_next_invocation then this
method, and any after_invoke extensions will not be called.

• Run all after-invoke plugins

– If the guild this was called on is within Plugin.blacklisted_guilds then execution will be skipped and
we move onto the next plugin.

– After_invoke plugins get output from both AntiSpamHandler and all pre-invoke plugins as a
method argument

32 Chapter 10. Package Plugin System

CHAPTER 11

Plugin Class Schema

All plugins that aim to be used as a registered extension within AntiSpamHandler should have at least the following
class layout.

All registered plugins must subclass BasePlugin

11.1 Pre-invoke Schema

1 from antispam import BasePlugin
2

3 class Placeholder(BasePlugin):
4 def __init__(self):
5 self.is_pre_invoke = True
6

7 async def propagate(self, message: discord.Message) -> dict:
8 # Do your code stuff here

self.is_pre_invoke is optional assuming your extension is using a pre-invoke due to the nature of the imple-
mentation.

11.2 After-invoke Schema

1 from antispam import BasePlugin
2

3 class Placeholder(BasePlugin):
4 def __init__(self):
5 self.is_pre_invoke = False
6

7 async def propagate(self, message: discord.Message, propagate_data: CorePayload) -
→˓> dict:

8 # Do your code stuff here

33

DPY Anti-Spam

The only difference between these two schema’s, outside of self.is_pre_invoke being different, is that the
after-invoke method will also be given an extra argument which is the data returned by propagate

11.3 Cancelling Invocation

If a key called cancel_next_invocation is True within the return data from any extension,
AntiSpamHandler.propagate will immediately return without executing any remaining extensions or even
AntiSpamHandler.propagate

Example usage: Say you want to use AntiSpamHandler, but only if the message doesnt contain a secret word. You
would create a pre-invoke extension, and if the secret word is said you would set cancel_next_invocation to
True and then AntiSpamHandler would ignore that message. Thats quite cool aint it! Woop woop

34 Chapter 11. Plugin Class Schema

CHAPTER 12

Plugin-Cache Interaction

The interface you should use to have your plugin store data in the global cache.

class antispam.PluginCache(handler: antispam.anti_spam_handler.AntiSpamHandler, caller)
This class handles all data storage. You should simply refer to the methods in this class as your means of
interacting with the internal cache

__init__(handler: antispam.anti_spam_handler.AntiSpamHandler, caller)

Parameters

• handler (AntiSpamHandler) – Your AntiSpamHandler instance

• caller (class) – self, from the class using this class

get_guild_data(guild_id: int)→ Any
Get a dictionary of all data for this guild that was stored by this class

Parameters guild_id (int) – The guild to fetch

Returns The data stored on this

Return type Any

Raises GuildNotFound – The given guild could not be found in the cache or it has no stored
data

get_member_data(member_id: int, guild_id: int)→ Any
Returns a dictionary of data this caller is allowed to access and store how they please

Parameters

• member_id (int) – The user we want to get data for

• guild_id (int) – The guild for the user we want

Returns Stored data on this member which has been stored by this class

Return type Any

Raises MemberNotFound – The given user/guild could not be found internally or they have
no stored data

35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

set_guild_data(guild_id: int, addon_data: Any)→ None
Stores the given addon data dictionary within the guilds cache

Parameters

• guild_id (int) – The guild to store this on

• addon_data (Any) – The data to store on this guild

Notes

Silently creates a new Guild as required

set_member_data(member_id: int, guild_id: int, addon_data: Any)→ None
Stores a member’s data within a guild

Parameters

• guild_id (int) – The guild to add this user’s data into

• member_id (int) – The user’s id to store

• addon_data (Any) – The data to store

Notes

Silently creates the required Guild / Member objects as needed

36 Chapter 12. Plugin-Cache Interaction

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CHAPTER 13

AntiSpamTracker Plugin

A cool plugin designed to assist you with custom punishments.

class antispam.plugins.AntiSpamTracker(anti_spam_handler: anti-
spam.anti_spam_handler.AntiSpamHandler,
spam_amount_to_punish,
valid_timestamp_interval=None)

A class devoted to people who want to handle punishments themselves.

This class wraps a few things, and handles the logic of ensuring everything exists (or doesnt) among other things
such as untracking users after the valid storage interval expires

In order to use this in your code, you can either:

• Subclass this class and override the do_punishment method and then use it that way to keep it clean

• Initialize this class and simply use the bool is_spamming() and do punishments based off that

• Initialize this class and simply use get_user_count() to get the number of times the user should be
punished and do your own logic

This mainly just depends on how granular you want to be within your code base.

The way it works, is everytime you call propagate you simply pass the returned data into update_cache
and it will update said Members cache if AntiSpamHandler thinks that they should be punished. Now, you set
spam_amount_to_punish when creating an instance of this class and that is used to check if YOU think
they should be punished, and what punishment to give when they hit that cap.

Basically:

propagate -> update_cache, if the User should be punished we increment internal counter

is_spamming -> Checks if the User’s internal counter meets spam_amount_to_punish and returns a
bool

__init__(anti_spam_handler: antispam.anti_spam_handler.AntiSpamHandler,
spam_amount_to_punish, valid_timestamp_interval=None)→ None

Initialize this class and get it ready for usage.

Parameters

37

DPY Anti-Spam

• anti_spam_handler (AntiSpamHandler) – Your AntiSpamHandler instance

• spam_amount_to_punish (int) – A number denoting the minimum value required
per user in order trip is_spamming

• valid_timestamp_interval (int) – How long a timestamp should remain ‘valid’
for. Defaults to AntiSpamHandler.options.get("message_interval")

NOTE this is in milliseconds

Raises

• TypeError – Invalid Arg Type

• ValueError – Invalid Arg Type

anti_spam_handler

do_punishment(message, *args, **kwargs)→ None
This only exists for if the user wishes to subclass this class and implement there own logic for punishments
here.

Parameters message – The message to extract the guild and user from

Notes

This does nothing unless you subclass and implement it yourself.

get_user_count(message)→ int
Returns how many messages that are still ‘valid’ (counted as spam) a certain user has

Parameters message – The message from which to extract user

Returns How many times this user has sent a message that has been marked as ‘punishment
worthy’ by AntiSpamHandler within the valid interval time period

Return type int

Raises MemberNotFound – The User for the message could not be found

is_spamming(message)→ bool
Given a message, deduce and return if a user is classed as ‘spamming’ or not based on
punish_min_amount

Parameters message – The message to extract guild and user from

Returns True if the User is spamming else False

Return type bool

member_tracking

propagate(message, data: Optional[antispam.dataclasses.core.CorePayload] = None)→ dict
Overwrite the base extension to call update_cache internally so it can be used as an extension

punish_min_amount

remove_outdated_timestamps(data: List[T], member_id: int, guild_id: int)→ None
This logic works around checking the current time vs a messages creation time. If the message is older by
the config amount it can be cleaned up

Generally not called by the end user

Parameters

• data (List) – The data to work with

38 Chapter 13. AntiSpamTracker Plugin

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

DPY Anti-Spam

• member_id (int) – The id of the member to store on

• guild_id (int) – The id of the guild to store on

remove_punishments(message)
After you punish someone, call this method to ‘clean up’ there punishments.

Parameters message – The message to extract user from

Raises TypeError – Invalid arg

Notes

This will actually create a member internally if one doesn’t already exist for simplicities sake

update_cache(message, data: antispam.dataclasses.core.CorePayload)→ None
Takes the data returned from propagate and updates this Class’s internal cache

Parameters

• message – The message related to data’s propagation

• data (CorePayload) – The data returned from propagate

valid_global_interval

39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#TypeError

DPY Anti-Spam

40 Chapter 13. AntiSpamTracker Plugin

CHAPTER 14

AntiMassMention Plugin

A cool plugin designed to assist you when dealing with mass mentions.

class antispam.plugins.MassMentionPunishment(member_id: int, guild_id: int, channel_id:
int, is_overall_punishment: bool)

This dataclass is what is dispatched when someone should be punished for mention spam.

Parameters

• member_id (int) – The associated members id

• channel_id (int) – The associated channels id

• guild_id (int) – The associated guilds id

• is_overall_punishment (bool) – If this is True, it means the user has ex-
ceeded total_mentions_before_punishment. Otherwise they have exceeded
min_mentions_per_message

Notes

You shouldn’t be making instances of this.

class antispam.plugins.AntiMassMention(bot, handler: anti-
spam.anti_spam_handler.AntiSpamHandler,
*, total_mentions_before_punishment:
int = 10, time_period: int = 15000,
min_mentions_per_message: int = 5)

In order to check if you should punish someone, see the below code.

1 data = await AntiSpamHandler.propagate(message)
2 return_item: Union[dict, MassMentionPunishment] = data.after_invoke_extensions[

→˓"AntiMassMention"]
3

4 if isinstance(return_item, MassMentionPunishment):
5 # Punish for mention spam

41

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

DPY Anti-Spam

__init__(bot, handler: antispam.anti_spam_handler.AntiSpamHandler, *, to-
tal_mentions_before_punishment: int = 10, time_period: int = 15000,
min_mentions_per_message: int = 5)

Parameters

• bot – Our bot instance

• handler (AntiSpamHandler) – Our AntiSpamHandler instance

• total_mentions_before_punishment (int) – How many mentions within the
time period before we punish the user Inclusive

• time_period (int) – The time period valid for mentions Is in milliseconds

• min_mentions_per_message (int) – The minimum amount of mentions in a mes-
sage before a punishment is issued Inclusive

member = None

{

“total_mentions”: [Tracking(),

]

}

propagate(message)→ Union[dict, antispam.plugins.anti_mass_mention.MassMentionPunishment]
Manages and stores any mass mentions per users

Parameters message – The message to interact with

Returns

• dict – A dictionary explaining what actions have been taken

• MassMentionPunishment – Data surrounding the punishment you should be doing.

42 Chapter 14. AntiMassMention Plugin

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

CHAPTER 15

Statistics Plugin

A simplistic approach to statistics gathering which works by default and requires no further setup.

class antispam.plugins.Stats(anti_spam_handler: antispam.anti_spam_handler.AntiSpamHandler)
A simplistic approach to aggregating statistics across the anti spam package.

Do note however, it assumes plugins do not error out. If a plugin errors out, this will be inaccurate.

This does play with internals a bit, however, it is distributed within the library I am okay modifying the base
package to make this work even better.

__init__(anti_spam_handler: antispam.anti_spam_handler.AntiSpamHandler)
Initialize self. See help(type(self)) for accurate signature.

injectable_nonce = 'Issa me, Mario!'

propagate(message, data: antispam.dataclasses.core.CorePayload)→ dict
This method is called whenever the base antispam.propagate is called, adhering to self.
is_pre_invoke

Parameters

• message (Union[discord.Message, hikari.messages.Message]) – The
message to run propagation on

• data (Optional[CorePayload]) – Optional input given to after invoke plugins
which is the return value from the main propagate()

Returns A dictionary of useful data to the end user

Return type dict

43

https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/stdtypes.html#dict

DPY Anti-Spam

44 Chapter 15. Statistics Plugin

CHAPTER 16

AdminLogs Plugin

A plugin design to save admins hassle with regard to evidence collection on automated punishments.

Simply register this as a plugin, and it will save the relevant information for all punishments to a text file.

class antispam.plugins.AdminLogs(handler: antispam.anti_spam_handler.AntiSpamHandler,
log_location: str)

A plugin design to save admins hassle with regard to evidence collection on automated punishments.

__init__(handler: antispam.anti_spam_handler.AntiSpamHandler, log_location: str)

Parameters

• handler (AntiSpamHandler) – Our AntiSpamHandler instance

• log_location – The directory to store logs in, relative from the caller location. This
directory should be empty or only contain previous output from this plugin.

Notes

This will save transcripts for every punishment, but it only sends ones to discord if the Guild has a
log_channel_id set.

propagate(message, data: antispam.dataclasses.core.CorePayload = None)→ Any
This method is called whenever the base antispam.propagate is called, adhering to self.
is_pre_invoke

Parameters

• message (Union[discord.Message, hikari.messages.Message]) – The
message to run propagation on

• data (Optional[CorePayload]) – Optional input given to after invoke plugins
which is the return value from the main propagate()

Returns A dictionary of useful data to the end user

Return type dict

45

https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/stdtypes.html#dict

DPY Anti-Spam

46 Chapter 16. AdminLogs Plugin

CHAPTER 17

Object Overview

The purpose of this section is to inform developers a bit more about how this package works Internally. For the
everyday user, this will not be needed. It is aimed at plugin developers who need to interact with the internals.

Anyway, internally within the rewritten package all data is stored within a slotted attrs dataclass. Thus was picked
over regular class’s to stop boiler plate. It is also better for its given use case when compared to a dictionary as it is a
fairly set size.

In the initial versions, we also included logic wrapped in the same class but after the move to dataclasses the logic was
abstracted out to reduce memory overhead.

17.1 Plugin developers

You shouldn’t in most cases be interacting directly with these class’s as the package provides an interface for getting
and setting data. Your main focus is within the addons variable which is a dictionary which maps the name of your
plugin class to the data you wish to store.

47

DPY Anti-Spam

48 Chapter 17. Object Overview

CHAPTER 18

Abc Reference

This Protocol simply defines how a Cache should work. This is going to only be useful if you either plan on
working directly with an existing cache or wish to build your own.

Any form of internal cache is guranteed to implement this so you can treat it as a source of truth for usage. (Unless
you bypass them)

class antispam.abc.Cache(*args, **kwargs)
A generic Protocol for any Cache to implement

add_message(message: antispam.dataclasses.message.Message)→ None
Adds a Message to the relevant Member, creating the Guild/Member if they don’t exist

Parameters message (Message) – The Message to add to the internal cache

Notes

This should silently create any Guild’s/Member’s required to fulfil this transaction

delete_guild(guild_id: int)→ None
Removes a guild from the cache.

Parameters guild_id (int) – The id of the guild we wish to remove

Notes

This fails silently.

delete_member(member_id: int, guild_id: int)→ None
Removes a member from the cache.

Parameters

• member_id (int) – The id of the member we wish to remove

• guild_id (int) – The guild this member is in

49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

Notes

This fails silently.

drop()→ None
Drops the entire cache, deleting everything contained within.

get_all_guilds()→ AsyncIterable[antispam.dataclasses.guild.Guild]
Returns a generator containing all cached guilds

Yields Guild – A generator of all stored guilds

get_all_members(guild_id: int)→ AsyncIterable[antispam.dataclasses.member.Member]
Fetches all members within a guild and returns them within a generator

Parameters guild_id (int) – The guild we want members in

Yields Member – All members in the given guild

Raises GuildNotFound – The given guild was not found

get_guild(guild_id: int)→ antispam.dataclasses.guild.Guild
Fetch a Guild dataclass populated with members

Parameters guild_id (int) – The id of the Guild to retrieve from cache

Raises GuildNotFound – A Guild could not be found in the cache with the given id

get_member(member_id: int, guild_id: int)→ antispam.dataclasses.member.Member
Fetch a Member dataclass populated with messages

Parameters

• member_id (int) – The id of the member to fetch from cache

• guild_id (int) – The id of the guild this member is associated with

Raises

• MemberNotFound – This Member could not be found on the associated Guild within
the internal cache

• GuildNotFound – The relevant guild could not be found

initialize(*args, **kwargs)→ None
This method gets called once when the AntiSpamHandler init() method gets called to allow for setting up
connections, etc

Notes

This is not required.

reset_member_count(member_id: int, guild_id: int, reset_type: anti-
spam.enums.reset_type.ResetType)→ None

Reset the chosen enum type back to the default value

Parameters

• member_id (int) – The Member to reset

• guild_id (int) – The guild this member is in

• reset_type (ResetType) – An enum denoting the type of reset

50 Chapter 18. Abc Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

set_guild(guild: antispam.dataclasses.guild.Guild)→ None
Stores a Guild in the cache

This is essentially a UPSERT operation

Parameters guild (Guild) – The Guild that needs to be stored

set_member(member: antispam.dataclasses.member.Member)→ None
Stores a Member internally and attaches them to a Guild, creating the Guild silently if required

Essentially an UPSERT operation

Parameters member (Member) – The Member we want to cache

class antispam.abc.Lib(*args, **kwargs)
A protocol to extend and implement for any libs that wish to hook into this package and work natively.

Notes

Not public api. For internal usage only.

check_message_can_be_propagated(message)→ antispam.dataclasses.propagate_data.PropagateData
Given a message from the relevant package, run all checks to check if this message should be propagated.

Parameters message (Union[discord.Message, hikari.messages.
Message]) – The message to check

Returns The data required within propagate

Return type PropagateData

Raises PropagateFailure – This raises an error with the .data attribute set. .data is what
get returned from within propagate

create_message(message)→ antispam.dataclasses.message.Message
Given a message to extract data from, create and return a Message class

Parameters message (Union[discord.Message, hikari.messages.
Message]) – The message to extract data from

Returns The flushed out message

Return type Message

delete_member_messages(member: antispam.dataclasses.member.Member)→ None
Given a member, traverse all duplicate messages and delete them.

Parameters member (Member) – The member whose messages should be deleted

Notes

Just call delete_message on each message

delete_message(message)→ None
Given a message, call and handle the relevant deletion contexts.

Parameters message (Union[discord.Message, hikari.messages.
Message]) – The message to delete

51

https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message

DPY Anti-Spam

Notes

This should handle given errors silently.

dict_to_embed(data: dict, message, warn_count: int, kick_count: int)

Parameters

• data (dict) – The data to build an embed from

• message (Union[discord.Message, hikari.messages.Message]) – The
message to extract data from

• warn_count (int) – How many warns this person has

• kick_count (int) – How many kicks this person has

Returns

Return type Union[discord.Embed, hikari.embeds.Embed]

embed_to_string(embed)→ str
Given an embed, return a string representation

Parameters embed (Union[discord.Embed, hikari.embeds.Embed]) – The em-
bed to cast to string

Returns The embed as a string

Return type str

get_channel_by_id(channel_id: int)
Returns the given channel for the id

get_channel_from_message(message)
Returns the channel for a message

get_channel_id(message)→ int
Returns the channel id of this message

get_file(path: str)
Returns a discord file object for the given path

get_guild_id(message)→ int
Returns the guild id of this message

get_message_mentions(message)
Returns all the mentions from a message

punish_member(original_message, member: antispam.dataclasses.member.Member, internal_guild:
antispam.dataclasses.guild.Guild, user_message, guild_message, is_kick: bool,
user_delete_after: int = None, channel_delete_after: int = None)

A generic method to handle multiple methods of punishment for a user. Supports: kicking, banning

Parameters

• member (Member) – A reference to the member we wish to punish

• internal_guild (Guild) – A reference to the guild this member is in

• original_message (Union[discord.Message, hikari.messages.
Message]) – Where we get everything from :)

• user_message (Union[str, discord.Embed, hikari.embeds.Embed])
– A message to send to the user who is being punished

52 Chapter 18. Abc Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed

DPY Anti-Spam

• guild_message (Union[str, discord.Embed, hikari.embeds.
Embed]) – A message to send in the guild for whoever is being punished

• is_kick (bool) – Is it a kick? Else ban

• user_delete_after (int, Optional) – An int value denoting the time to delete
user sent messages after

• channel_delete_after (int, Optional) – An int value denoting the time to
delete channel sent messages after

Raises MissingGuildPermissions – I lack perms to carry out this punishment

send_guild_log(guild, message, delete_after_time: Optional[int], original_channel, file=None)→
None

Sends a message to the guilds log channel

Notes

If no log channel, send in ctx.channel

Parameters

• guild (Guild) – The guild we wish to send this too

• message (Union[str, discord.Embed, hikari.embeds.Embed]) – What
to send to the guilds log channel

• delete_after_time (Optional[int]) – How long to delete these messages after

• original_channel (Union[discord.abc.GuildChannel, discord.
abc.PrivateChannel, hikari.GuildTextChannel]) – Where to send the
message assuming this guild has no guild log channel already set.

• file – A file to send

Notes

This should catch any sending errors, log them and then proceed to return None

send_message_to_(target, message, mention: str, delete_after_time: Optional[int] = None) →
None

Given a message and target, send :param target: Where to send the message :type target:
Union[discord.abc.Messageable, hikari TODO doc this] :param message: The message to send :type mes-
sage: Union[str, discord.Embed, hikari.embeds.Embed] :param mention: A string denoting a raw mention
of the punished user :type mention: str :param delete_after_time: When to delete the message after :type
delete_after_time: Optional[int]

Notes

This should implement Options.mention_on_embed

substitute_args(message: str, original_message, warn_count: int, kick_count: int)→ str
Given a message, substitute in relevant arguments and return a valid string

Parameters

• message (str) – The message to substitute args into

• original_message (Union[discord.Message, hikari.messages.
Message]) – The message to extract data from

53

https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://docs.python.org/3/library/functions.html#int
https://discordpy.readthedocs.io/en/latest/api.html#discord.abc.GuildChannel
https://discordpy.readthedocs.io/en/latest/api.html#discord.abc.PrivateChannel
https://discordpy.readthedocs.io/en/latest/api.html#discord.abc.PrivateChannel
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message

DPY Anti-Spam

• warn_count (int) – How many warns this person has

• kick_count (int) – How many kicks this person has

Returns The message with substituted args

Return type str

transform_message(item: Union[str, dict], message, warn_count: int, kick_count: int)

Parameters

• item (Union[str, dict]) – The data to substitute

• message (Union[discord.Message, hikari.messages.Message]) – The
message to extract data from

• warn_count (int) – How many warns this person has

• kick_count (int) – How many kicks this person has

Returns

• Union[str, discord.Embed, hikari.embeds.Embed]

• A template complete message ready for sending

visualizer(content: str, message, warn_count: int = 1, kick_count: int = 2)
Returns a message transformed as if the handler did it

Parameters

• content (Union[str, discord.Embed, hikari.embeds.Embed]) – What
to transform

• message (Union[discord.Message, hikari.messages.Message]) –
Where to extract our values from

• warn_count (int) – The warns to visualize with

• kick_count (int) – The kicks to visualize with

Returns The transformed content

Return type Union[str, discord.Embed]

54 Chapter 18. Abc Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed
https://www.hikari-py.dev/hikari/embeds.html#hikari.embeds.Embed
https://discordpy.readthedocs.io/en/latest/api.html#discord.Message
https://www.hikari-py.dev/hikari/messages.html#hikari.messages.Message
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://discordpy.readthedocs.io/en/latest/api.html#discord.Embed

CHAPTER 19

ASH Exceptions

Note, these classes should not be used by you. Only use the AntiSpamHandler to work with this package.

All exceptions subclass a base exception BaseASHException which provides functionality for error messages

LICENSE The MIT License (MIT)

Copyright (c) 2020-2021 Skelmis

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission
notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. LICENSE

exception antispam.exceptions.BaseASHException(*args)
A base exception handler for the ASH ecosystem.

__init__(*args)
Initialize self. See help(type(self)) for accurate signature.

exception antispam.exceptions.DuplicateObject(*args)
Raised because you attempted to create and add an object, using the exact same id’s as a pre-existing one.

exception antispam.exceptions.GuildAddonNotFound(*args)
This class has not addon stored on this guild.

exception antispam.exceptions.GuildNotFound(*args)
A Guild matching this guild id could not be found in the cache.

exception antispam.exceptions.InvocationCancelled(*args)
Called when a pre-invoke plugin returned cancel_next_invocation

55

DPY Anti-Spam

exception antispam.exceptions.LogicError(*args)
Raised because internal logic has failed. Please create an issue in the github.

exception antispam.exceptions.MemberAddonNotFound(*args)
This class has not addon stored on this member.

exception antispam.exceptions.MemberNotFound(*args)
A Member matching this id and guild id could not be found in the cache.

exception antispam.exceptions.MissingGuildPermissions(*args)
I need both permissions to kick & ban people from this guild in order to work!

exception antispam.exceptions.NotFound(*args)
Something could not be found.

exception antispam.exceptions.ObjectMismatch(*args)
Raised because you attempted add a message to a member, but that member didn’t create that message.

exception antispam.exceptions.PluginError(*args)
An error occurred that was related to a plugin and not AntiSpamHandler

exception antispam.exceptions.PropagateFailure(*args, data: dict)

__init__(*args, data: dict)
Initialize self. See help(type(self)) for accurate signature.

56 Chapter 19. ASH Exceptions

CHAPTER 20

Guild Reference

You should not be creating this object yourself. It is just useful to understand how they work for say, plugin develop-
ment.

Internally the guild object wraps a couple layers of data to handle custom options as well as providing an O(1) way of
storing Members.

class antispam.dataclasses.guild.Guild(id: int, options: anti-
spam.dataclasses.options.Options = NOTH-
ING, log_channel_id: int = None, members:
Dict[int, antispam.dataclasses.member.Member]
= NOTHING, messages:
List[antispam.dataclasses.message.Message] =
NOTHING, addons: Dict[str, Any] = NOTHING)

A simplistic dataclass representing a Guild

__init__(id: int, options: antispam.dataclasses.options.Options = NOTHING, log_channel_id: int
= None, members: Dict[int, antispam.dataclasses.member.Member] = NOTHING, mes-
sages: List[antispam.dataclasses.message.Message] = NOTHING, addons: Dict[str, Any]
= NOTHING)→ None

Method generated by attrs for class Guild.

addons

id

log_channel_id

members

messages

options

57

DPY Anti-Spam

58 Chapter 20. Guild Reference

CHAPTER 21

Member Reference

You should not be creating this object yourself. It is just useful to understand how they work for say, plugin develop-
ment.

Internally this object provides an O(1) way of storing Messages as well as maintaining the requried data to track and
punish spammers

class antispam.dataclasses.member.Member(id: int, guild_id: int, warn_count: int = 0,
kick_count: int = 0, duplicate_counter: int = 1,
duplicate_channel_counter_dict: Dict[int, int]
= NOTHING, in_guild: bool = True, messages:
List[antispam.dataclasses.message.Message] =
NOTHING, addons: Dict[str, Any] = NOTH-
ING)

A simplistic dataclass representing a Member

__init__(id: int, guild_id: int, warn_count: int = 0, kick_count: int = 0, duplicate_counter: int =
1, duplicate_channel_counter_dict: Dict[int, int] = NOTHING, in_guild: bool = True, mes-
sages: List[antispam.dataclasses.message.Message] = NOTHING, addons: Dict[str, Any] =
NOTHING)→ None

Method generated by attrs for class Member.

addons

duplicate_channel_counter_dict

duplicate_counter

guild_id

id

kick_count

messages

warn_count

59

DPY Anti-Spam

60 Chapter 21. Member Reference

CHAPTER 22

Message Reference

You should not be creating this object yourself. It is just useful to understand how they work for say, plugin develop-
ment.

Internally the Message object just takes a few attributes from discord.Message and stores them in a smaller object
to save on memory. It also maintains a is_duplicate bool for internal reasons.

class antispam.dataclasses.message.Message(id: int, channel_id: int, guild_id: int, au-
thor_id: int, content: str, creation_time: date-
time.datetime = NOTHING, is_duplicate: bool
= False)

A simplistic dataclass representing a Message

__init__(id: int, channel_id: int, guild_id: int, author_id: int, content: str, creation_time: date-
time.datetime = NOTHING, is_duplicate: bool = False)→ None

Method generated by attrs for class Message.

author_id

channel_id

content

creation_time

guild_id

id

is_duplicate

61

DPY Anti-Spam

62 Chapter 22. Message Reference

CHAPTER 23

RedisCache Reference

A caching option within the standard package.

Furthermore, refer to antispam.abc.Cache for protocol implementation.

Not yet made

class antispam.caches.RedisCache(handler)
Not implemented lol

__init__(handler)
Initialize self. See help(type(self)) for accurate signature.

63

DPY Anti-Spam

64 Chapter 23. RedisCache Reference

CHAPTER 24

MemoryCache Reference

This is the default cache for the package. You shouldn’t need to implement it yourself.

Furthermore, refer to antispam.abc.Cache for protocol implementation.

class antispam.caches.MemoryCache(handler)

__init__(handler)
Initialize self. See help(type(self)) for accurate signature.

add_message(message: antispam.dataclasses.message.Message)→ None
Adds a Message to the relevant Member, creating the Guild/Member if they don’t exist

Parameters message (Message) – The Message to add to the internal cache

Notes

This should silently create any Guild’s/Member’s required to fulfil this transaction

delete_guild(guild_id: int)→ None
Removes a guild from the cache.

Parameters guild_id (int) – The id of the guild we wish to remove

Notes

This fails silently.

delete_member(member_id: int, guild_id: int)→ None
Removes a member from the cache.

Parameters

• member_id (int) – The id of the member we wish to remove

• guild_id (int) – The guild this member is in

65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

Notes

This fails silently.

drop()→ None
Drops the entire cache, deleting everything contained within.

get_all_guilds()→ AsyncIterable[antispam.dataclasses.guild.Guild]
Returns a generator containing all cached guilds

Yields Guild – A generator of all stored guilds

get_all_members(guild_id: int)→ AsyncIterable[antispam.dataclasses.member.Member]
Fetches all members within a guild and returns them within a generator

Parameters guild_id (int) – The guild we want members in

Yields Member – All members in the given guild

Raises GuildNotFound – The given guild was not found

get_guild(guild_id: int)→ antispam.dataclasses.guild.Guild
Fetch a Guild dataclass populated with members

Parameters guild_id (int) – The id of the Guild to retrieve from cache

Raises GuildNotFound – A Guild could not be found in the cache with the given id

get_member(member_id: int, guild_id: int)→ antispam.dataclasses.member.Member
Fetch a Member dataclass populated with messages

Parameters

• member_id (int) – The id of the member to fetch from cache

• guild_id (int) – The id of the guild this member is associated with

Raises

• MemberNotFound – This Member could not be found on the associated Guild within
the internal cache

• GuildNotFound – The relevant guild could not be found

initialize(*args, **kwargs)→ None
This method gets called once when the AntiSpamHandler init() method gets called to allow for setting up
connections, etc

Notes

This is not required.

reset_member_count(member_id: int, guild_id: int, reset_type: anti-
spam.enums.reset_type.ResetType)→ None

Reset the chosen enum type back to the default value

Parameters

• member_id (int) – The Member to reset

• guild_id (int) – The guild this member is in

• reset_type (ResetType) – An enum denoting the type of reset

66 Chapter 24. MemoryCache Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

DPY Anti-Spam

set_guild(guild: antispam.dataclasses.guild.Guild)→ None
Stores a Guild in the cache

This is essentially a UPSERT operation

Parameters guild (Guild) – The Guild that needs to be stored

set_member(member: antispam.dataclasses.member.Member)→ None
Stores a Member internally and attaches them to a Guild, creating the Guild silently if required

Essentially an UPSERT operation

Parameters member (Member) – The Member we want to cache

67

DPY Anti-Spam

68 Chapter 24. MemoryCache Reference

CHAPTER 25

PropagateData Object Reference

class antispam.dataclasses.propagate_data.PropagateData(guild_id: int, mem-
ber_name: str,
member_id: int,
has_perms_to_make_guild:
bool)

A simplistic dataclass representing the data propagate needs

__init__(guild_id: int, member_name: str, member_id: int, has_perms_to_make_guild: bool) →
None

Method generated by attrs for class PropagateData.

guild_id

has_perms_to_make_guild

member_id

member_name

69

DPY Anti-Spam

70 Chapter 25. PropagateData Object Reference

CHAPTER 26

Install Notes

Initial install will get you a working version of this lib, however it is recommended you also install python-
Levenshtein to speed this up. This does require c++ build tools, hence why it is not included by default.

71

DPY Anti-Spam

72 Chapter 26. Install Notes

CHAPTER 27

Indices and tables

• genindex

• modindex

• search

73

DPY Anti-Spam

74 Chapter 27. Indices and tables

Python Module Index

a
antispam.exceptions, 55

75

DPY Anti-Spam

76 Python Module Index

Index

Symbols
__init__() (antispam.AntiSpamHandler method), 4
__init__() (antispam.CorePayload method), 29
__init__() (antispam.PluginCache method), 35
__init__() (antispam.caches.MemoryCache

method), 65
__init__() (antispam.caches.RedisCache method),

63
__init__() (antispam.dataclasses.guild.Guild

method), 57
__init__() (antispam.dataclasses.member.Member

method), 59
__init__() (antispam.dataclasses.message.Message

method), 61
__init__() (antispam.dataclasses.options.Options

method), 27
__init__() (antispam.dataclasses.propagate_data.PropagateData

method), 69
__init__() (antispam.exceptions.BaseASHException

method), 55
__init__() (antispam.exceptions.PropagateFailure

method), 56
__init__() (antispam.plugins.AdminLogs method),

45
__init__() (antispam.plugins.AntiMassMention

method), 41
__init__() (antispam.plugins.AntiSpamTracker

method), 37
__init__() (antispam.plugins.Stats method), 43

A
add_guild_log_channel() (anti-

spam.AntiSpamHandler method), 5
add_guild_options() (anti-

spam.AntiSpamHandler method), 5
add_ignored_item() (antispam.AntiSpamHandler

method), 5
add_message() (antispam.abc.Cache method), 49
add_message() (antispam.caches.MemoryCache

method), 65
addons (antispam.dataclasses.guild.Guild attribute), 57
addons (antispam.dataclasses.member.Member at-

tribute), 59
addons (antispam.dataclasses.options.Options at-

tribute), 27
AdminLogs (class in antispam.plugins), 45
anti_spam_handler (anti-

spam.plugins.AntiSpamTracker attribute),
38

AntiMassMention (class in antispam.plugins), 41
antispam.exceptions (module), 55
AntiSpamHandler (class in antispam), 3
AntiSpamTracker (class in antispam.plugins), 37
author_id (antispam.dataclasses.message.Message

attribute), 61

B
ban_threshold (anti-

spam.dataclasses.options.Options attribute),
27

BaseASHException, 55

C
Cache (class in antispam.abc), 49
CHANNEL (antispam.enums.IgnoreType attribute), 23
channel_id (antispam.dataclasses.message.Message

attribute), 61
check_message_can_be_propagated() (anti-

spam.abc.Lib method), 51
clean_cache() (antispam.AntiSpamHandler

method), 5
content (antispam.dataclasses.message.Message at-

tribute), 61
CorePayload (class in antispam), 29
create_message() (antispam.abc.Lib method), 51
creation_time (anti-

spam.dataclasses.message.Message attribute),
61

77

DPY Anti-Spam

D
delete_guild() (antispam.abc.Cache method), 49
delete_guild() (antispam.caches.MemoryCache

method), 65
delete_member() (antispam.abc.Cache method), 49
delete_member() (antispam.caches.MemoryCache

method), 65
delete_member_messages() (antispam.abc.Lib

method), 51
delete_message() (antispam.abc.Lib method), 51
delete_spam (antispam.dataclasses.options.Options

attribute), 27
delete_zero_width_chars (anti-

spam.dataclasses.options.Options attribute),
27

dict_to_embed() (antispam.abc.Lib method), 52
do_punishment() (anti-

spam.plugins.AntiSpamTracker method),
38

drop() (antispam.abc.Cache method), 50
drop() (antispam.caches.MemoryCache method), 66
duplicate_channel_counter_dict (anti-

spam.dataclasses.member.Member attribute),
59

duplicate_counter (anti-
spam.dataclasses.member.Member attribute),
59

DuplicateObject, 55

E
embed_to_string() (antispam.abc.Lib method), 52

G
get_all_guilds() (antispam.abc.Cache method),

50
get_all_guilds() (antispam.caches.MemoryCache

method), 66
get_all_members() (antispam.abc.Cache method),

50
get_all_members() (anti-

spam.caches.MemoryCache method), 66
get_channel_by_id() (antispam.abc.Lib method),

52
get_channel_from_message() (anti-

spam.abc.Lib method), 52
get_channel_id() (antispam.abc.Lib method), 52
get_file() (antispam.abc.Lib method), 52
get_guild() (antispam.abc.Cache method), 50
get_guild() (antispam.caches.MemoryCache

method), 66
get_guild_data() (antispam.PluginCache

method), 35
get_guild_id() (antispam.abc.Lib method), 52

get_guild_options() (anti-
spam.AntiSpamHandler method), 6

get_member() (antispam.abc.Cache method), 50
get_member() (antispam.caches.MemoryCache

method), 66
get_member_data() (antispam.PluginCache

method), 35
get_message_mentions() (antispam.abc.Lib

method), 52
get_user_count() (anti-

spam.plugins.AntiSpamTracker method),
38

GUILD (antispam.enums.IgnoreType attribute), 23
Guild (class in antispam.dataclasses.guild), 57
guild_ban_message (anti-

spam.dataclasses.options.Options attribute),
27

guild_ban_message_delete_after (anti-
spam.dataclasses.options.Options attribute),
27

guild_id (antispam.dataclasses.member.Member at-
tribute), 59

guild_id (antispam.dataclasses.message.Message at-
tribute), 61

guild_id (antispam.dataclasses.propagate_data.PropagateData
attribute), 69

guild_kick_message (anti-
spam.dataclasses.options.Options attribute),
27

guild_kick_message_delete_after (anti-
spam.dataclasses.options.Options attribute),
27

guild_warn_message (anti-
spam.dataclasses.options.Options attribute),
27

guild_warn_message_delete_after (anti-
spam.dataclasses.options.Options attribute),
27

GuildAddonNotFound, 55
GuildNotFound, 55

H
has_perms_to_make_guild (anti-

spam.dataclasses.propagate_data.PropagateData
attribute), 69

I
id (antispam.dataclasses.guild.Guild attribute), 57
id (antispam.dataclasses.member.Member attribute), 59
id (antispam.dataclasses.message.Message attribute), 61
ignore_bots (antispam.dataclasses.options.Options

attribute), 27
ignored_channels (anti-

spam.dataclasses.options.Options attribute),

78 Index

DPY Anti-Spam

27
ignored_guilds (anti-

spam.dataclasses.options.Options attribute),
27

ignored_members (anti-
spam.dataclasses.options.Options attribute),
27

ignored_roles (anti-
spam.dataclasses.options.Options attribute),
27

IgnoreType (class in antispam.enums), 23
init() (antispam.AntiSpamHandler method), 6
initialize() (antispam.abc.Cache method), 50
initialize() (antispam.caches.MemoryCache

method), 66
injectable_nonce (antispam.plugins.Stats at-

tribute), 43
InvocationCancelled, 55
is_duplicate (anti-

spam.dataclasses.message.Message attribute),
61

is_per_channel_per_guild (anti-
spam.dataclasses.options.Options attribute),
27

is_spamming() (antispam.plugins.AntiSpamTracker
method), 38

K
kick_count (antispam.dataclasses.member.Member

attribute), 59
KICK_COUNTER (antispam.enums.ResetType attribute),

23
kick_threshold (anti-

spam.dataclasses.options.Options attribute),
27

L
Lib (class in antispam.abc), 51
load_from_dict() (antispam.AntiSpamHandler

static method), 7
log_channel_id (antispam.dataclasses.guild.Guild

attribute), 57
LogicError, 56

M
MassMentionPunishment (class in anti-

spam.plugins), 41
MEMBER (antispam.enums.IgnoreType attribute), 23
member (antispam.plugins.AntiMassMention attribute),

42
Member (class in antispam.dataclasses.member), 59
member_ban_message (anti-

spam.dataclasses.options.Options attribute),
27

member_ban_message_delete_after (anti-
spam.dataclasses.options.Options attribute),
28

member_failed_ban_message (anti-
spam.dataclasses.options.Options attribute),
28

member_failed_kick_message (anti-
spam.dataclasses.options.Options attribute),
28

member_id (antispam.dataclasses.propagate_data.PropagateData
attribute), 69

member_kick_message (anti-
spam.dataclasses.options.Options attribute),
28

member_kick_message_delete_after (anti-
spam.dataclasses.options.Options attribute),
28

member_name (antispam.dataclasses.propagate_data.PropagateData
attribute), 69

member_tracking (anti-
spam.plugins.AntiSpamTracker attribute),
38

member_warn_message (anti-
spam.dataclasses.options.Options attribute),
28

MemberAddonNotFound, 56
MemberNotFound, 56
members (antispam.dataclasses.guild.Guild attribute),

57
MemoryCache (class in antispam.caches), 65
mention_on_embed (anti-

spam.dataclasses.options.Options attribute),
28

Message (class in antispam.dataclasses.message), 61
message_duplicate_accuracy (anti-

spam.dataclasses.options.Options attribute),
28

message_duplicate_count (anti-
spam.dataclasses.options.Options attribute),
28

message_interval (anti-
spam.dataclasses.options.Options attribute),
28

messages (antispam.dataclasses.guild.Guild attribute),
57

messages (antispam.dataclasses.member.Member at-
tribute), 59

MissingGuildPermissions, 56

N
no_punish (antispam.dataclasses.options.Options at-

tribute), 28
NotFound, 56

Index 79

DPY Anti-Spam

O
ObjectMismatch, 56
options (antispam.dataclasses.guild.Guild attribute),

57
Options (class in antispam.dataclasses.options), 25

P
per_channel_spam (anti-

spam.dataclasses.options.Options attribute),
28

PluginCache (class in antispam), 35
PluginError, 56
propagate() (antispam.AntiSpamHandler method), 7
propagate() (antispam.plugins.AdminLogs method),

45
propagate() (antispam.plugins.AntiMassMention

method), 42
propagate() (antispam.plugins.AntiSpamTracker

method), 38
propagate() (antispam.plugins.Stats method), 43
PropagateData (class in anti-

spam.dataclasses.propagate_data), 69
PropagateFailure, 56
punish_member() (antispam.abc.Lib method), 52
punish_min_amount (anti-

spam.plugins.AntiSpamTracker attribute),
38

R
RedisCache (class in antispam.caches), 63
register_plugin() (antispam.AntiSpamHandler

method), 7
remove_guild_log_channel() (anti-

spam.AntiSpamHandler method), 8
remove_guild_options() (anti-

spam.AntiSpamHandler method), 8
remove_ignored_item() (anti-

spam.AntiSpamHandler method), 8
remove_outdated_timestamps() (anti-

spam.plugins.AntiSpamTracker method),
38

remove_punishments() (anti-
spam.plugins.AntiSpamTracker method),
39

reset_member_count() (antispam.abc.Cache
method), 50

reset_member_count() (anti-
spam.AntiSpamHandler method), 8

reset_member_count() (anti-
spam.caches.MemoryCache method), 66

ResetType (class in antispam.enums), 23
ROLE (antispam.enums.IgnoreType attribute), 23

S
save_to_dict() (antispam.AntiSpamHandler

method), 9
send_guild_log() (antispam.abc.Lib method), 53
send_message_to_() (antispam.abc.Lib method),

53
set_guild() (antispam.abc.Cache method), 50
set_guild() (antispam.caches.MemoryCache

method), 66
set_guild_data() (antispam.PluginCache

method), 35
set_member() (antispam.abc.Cache method), 51
set_member() (antispam.caches.MemoryCache

method), 67
set_member_data() (antispam.PluginCache

method), 36
Stats (class in antispam.plugins), 43
substitute_args() (antispam.abc.Lib method), 53

T
transform_message() (antispam.abc.Lib method),

54

U
unregister_plugin() (anti-

spam.AntiSpamHandler method), 9
update_cache() (anti-

spam.plugins.AntiSpamTracker method),
39

V
valid_global_interval (anti-

spam.plugins.AntiSpamTracker attribute),
39

visualizer() (antispam.abc.Lib method), 54

W
warn_count (antispam.dataclasses.member.Member

attribute), 59
WARN_COUNTER (antispam.enums.ResetType attribute),

23
warn_only (antispam.dataclasses.options.Options at-

tribute), 28
warn_threshold (anti-

spam.dataclasses.options.Options attribute),
28

80 Index

	Main Interface
	Cache Choices
	Example usages
	Super duper basic bot
	Basic Hikari bot
	How to use templating in a string
	Cog Based Usage
	How to use templating in embeds
	Custom Punishments

	Package Logging
	Basic Usage

	Message Templating
	Templating Options
	Templating Usage
	Embed Templating

	Migrating to 1.0
	Changes
	Features
	Fixes

	Enum Reference
	Option’s Reference
	CorePayload Reference
	Package Plugin System
	Plugin Blacklisting
	Custom Punishments
	Call Stack

	Plugin Class Schema
	Pre-invoke Schema
	After-invoke Schema
	Cancelling Invocation

	Plugin-Cache Interaction
	AntiSpamTracker Plugin
	AntiMassMention Plugin
	Statistics Plugin
	AdminLogs Plugin
	Object Overview
	Plugin developers

	Abc Reference
	ASH Exceptions
	Guild Reference
	Member Reference
	Message Reference
	RedisCache Reference
	MemoryCache Reference
	PropagateData Object Reference
	Install Notes
	Indices and tables
	Python Module Index
	Index

